1 三角関数の極限に関する公式

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

を示すことにより、 $\sin x$ の導関数が $\cos x$ であることを証明せよ。

2 不等式

$$1 \leqq |x|-2+|y|-2 \leqq 3$$

の表す領域を xy 平面上に図示せよ。

3 4個の整数

$$n+1$$
, n^3+3 , n^5+5 , n^7+7

がすべて素数となるような正の整数nは存在しない。これを証明せよ。

xyz 空間内の 3 点 O(0,0,0), A(1,0,0), B(1,1,0) を頂点とする三角形 OAB を α 軸のまわりに 1 回転させてできる円すいを V とする。円すい V を y 軸のまわりに 1 回転させてできる立体の体積を求めよ。

n を 3 以上の整数とする。n 個の球 K_1,K_2,\ldots,K_n と n 個の空の箱 H_1,H_2,\ldots,H_n がある。以下のように, K_1,K_2,\ldots,K_n の順番に,球を箱に 1 つずつ入れていく。

まず,球 K_1 を箱 H_1, H_2, \ldots, H_n のどれか 1 つに無作為に入れる。次に,球 K_2 を,箱 H_2 が空ならば箱 H_2 に入れ,箱 H_2 が空でなければ残りの n-1 個の空の箱のどれか 1 つに無作為に入れる。

一般に、 $i=2,3,\ldots,n$ について、球 K_i を、箱 H_i が空ならば箱 H_i に入れ、箱 H_i が空でなければ残りの n-i+1 個の空の箱のどれか 1 つに無作為に入れる。

- (1) K_n が入る箱は H_1 または H_n である。これを証明せよ。
- (2) K_{n-1} が H_{n-1} に入る確率を求めよ。