国 実数 a,b,c,d,e に対して、座標平面上の点 A(a,b),B(c,d),C(e,0) をとる。ただし点 A と点 B はどちらも原点 O(0,0) とは異なる点とする。このとき、実数 s,t で

$$s\overrightarrow{OA} + t\overrightarrow{OB} = \overrightarrow{OC}$$

を満たすものが存在するための, a,b,c,d,e についての必要十分条件を求めよ。

- $oxed{2}$ t>0 において定義された関数 f(t) は次の条件(ア)(イ)を満たす。
 - (7) t>0 のとき、すべての実数 x に対して不等式

$$t \cdot \frac{e^x + e^{-x}}{2} + f(t) \ge 1 + x$$

が成り立つ。

(イ) t > 0 に対して, 等式

$$t \cdot \frac{e^x + e^{-x}}{2} + f(t) = 1 + x$$

を満たす実数 x が存在する。

このとき, f(t) を求めよ。

3

$$\sum_{n=1}^{40000} \frac{1}{\sqrt{n}}$$

の整数部分を求めよ。

- 4 半径 1 の 2 つの球 S_1 と S_2 が 1 点で接している。互いに重なる部分のない等しい半径を持つ n 個 $(n \ge 3)$ の球 T_1, T_2, \cdots, T_n があり,次の条件 $(\mathcal{P})(\mathcal{A})$ を満たす。
 - (r) T_i は S_1, S_2 にそれぞれ 1 点で接している $(i = 1, 2, \dots, n)$ 。
 - (A) T_i は T_{i+1} に 1 点で接しており $(i=1,2,\cdots,n-1)$,そして T_n は T_1 に 1 点で接している。

このとき,以下の問いに答えよ。

- (1) T_1, T_2, \cdots, T_n の共通の半径 r_n を求めよ。
- (2) S_1 と S_2 の中心を結ぶ直線のまわりに T_1 を回転してできる回転体の体積を V_n とし, T_1, T_2, \cdots, T_n の体積の和を W_n とするとき,極限

$$\lim_{n \to \infty} \frac{W_n}{V_n}$$

を求めよ。

- **5** さいころを繰り返し投げ,n 回目に出た目を X_n とする。n 回目までに出た目の積 $X_1X_2\cdots X_n$ を T_n で表す。 T_n を 5 で割った余りが 1 である確率を p_n とし,余りが 2,3,4 のいずれかである確率を q_n とする。
 - (1) $p_n + q_n$ を求めよ。
 - (2) p_{n+1} を p_n と n を用いて表せ。
 - (3) $r_n=\left(rac{6}{5}
 ight)^n p_n$ において r_n を求めることにより, p_n を n の式で表せ。