- 1 以上 6 以下の 2 つの整数 a, b に対し,関数 $f_n(x)$ $(n=1,2,3,\ldots)$ を次の条件 (\mathcal{P}) , (\mathcal{A}) , (\mathcal{P}) で定める。
 - $(\mathcal{T}) \ f_1(x) = \sin(\pi x)$

(1)
$$f_{2n}(x) = f_{2n-1}\left(\frac{1}{a} + \frac{1}{b} - x\right) (n = 1, 2, 3, \ldots)$$

(ウ)
$$f_{2n+1}(x) = f_{2n}(-x) \ (n=1,2,3,\ldots)$$

以下の問いに答えよ。

- (1) a=2, b=3 のとき, $f_5(0)$ を求めよ。
- (2) a=1, b=6 のとき, $\sum_{k=1}^{100} (-1)^k f_{2k}(0)$ を求めよ。
- (3) 1 個のさいころを 2 回投げて、1 回目に出る目を a、2 回目に出る目を b とするとき、 $f_6(0)=0$ となる確率を求めよ。

- **2** 次の問いに答えよ。
 - (1) c を正の定数とする。正の実数 x, y が x + y = c をみたすとき,

$$\left(1 + \frac{1}{x}\right) \left(1 + \frac{1}{y}\right)$$

の最小値をcを用いて表せ。

(2) 正の実数 x, y, z が x + y + z = 1 をみたすとき,

$$\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1-\frac{4}{3z}\right)$$

の最大値を求めよ。

- **3** 座標平面において、原点 O を中心とする半径 r の円と放物線 $y=\sqrt{2}(x-1)^2$ は、ただ 1 つの共有点 (a,b) をもつとする。
 - (1) a, b, r の値をそれぞれ求めよ。
 - (2) 連立不等式

$$a \le x \le 1$$
, $0 \le y \le \sqrt{2}(x-1)^2$, $x^2 + y^2 \ge r^2$

の表す領域を、x 軸のまわりに 1 回転してできる回転体の体積を求めよ。

 $oxed{4}$ 正の整数 n に対して

$$S_n = \sum_{k=1}^n \frac{1}{k}$$

とおき、1 以上 n 以下のすべての奇数の積を A_n とする。

- (1) $\log_2 n$ 以下の最大の整数を N とするとき, $2^N A_n S_n$ は奇数の整数であることを示せ。
- (2) $S_n = 2 + \frac{m}{20}$ となる正の整数の組(n,m) をすべて求めよ。
- (3) 整数 $a \le 0 \le b < 1$ をみたす実数 b を用いて,

$$A_{20}S_{20} = a + b$$

と表すとき, bの値を求めよ。

- **5** 円上の 5 点 A, B, C, D, E は反時計回りにこの順に並び、円周を 5 等分している。5 点 A, B, C, D, E を頂点とする正五角形を R_1 とする。 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{CD} = \overrightarrow{c}$ とおき、 \overrightarrow{d} の大きさを x とする。
 - (1) \vec{A} の大きさを y とするとき、 $x^2 = y(y-x)$ が成り立つことを示せ。
 - (2) \overrightarrow{BC} を \overrightarrow{a} , \overrightarrow{c} を用いて表せ。
 - (3) R_1 の対角線の交点として得られる R_1 の内部の 5 つの点を頂点とする正五角形を R_2 とする。 R_2 の一辺の長さを x を用いて表せ。
 - (4) $n=1,2,3,\ldots$ に対して、 R_n の対角線の交点として得られる R_n の内部の 5 つの点を頂点とする正五角形を R_{n+1} とし、 R_n の面積を S_n とする。

$$\lim_{n \to \infty} \frac{1}{S_1} \sum_{k=1}^{n} (-1)^{k+1} S_k$$

を求めよ。