$oxed{1}$ a,b を ab < 1 をみたす正の実数とする. xy 平面上の点 P(a,b) から、曲線

$$y = \frac{1}{x} \quad (x > 0)$$

に 2 本の接線を引き、その接点を $Q\left(s,\frac{1}{s}\right)$ 、 $R\left(t,\frac{1}{t}\right)$ とする. ただし、 s < t とする.

- (1) s および t を a,b を用いて表せ.
- (2) 点 P(a,b) が曲線 $y=\frac{9}{4}-3x^2$ 上の x>0,y>0 をみたす部分を動くとき, $\frac{t}{s}$ の最小値とそのときの a,b の値を求めよ.

- ② 空間内に、同一平面上にない 4 点 O, A, B, C がある. s, t を 0 < s < 1, 0 < t < 1 をみたす実数とする. 線分 OA を 1:1 に内分する点を A_0 , 線分 OB を 1:2 に内分する点を B_0 , 線分 AC を s:(1-s) に内分する点を P, 線分 BC を t:(1-t) に内分する点を Q とする. さらに 4 点 A_0 , B_0 , P, Q が同一平面上にあるとする.
 - (1) t を s を用いて表せ.
 - (2) $|\overrightarrow{OA}|=1$, $|\overrightarrow{OB}|=|\overrightarrow{OC}|=2$, $\angle AOB=120^\circ$, $\angle BOC=90^\circ$, $\angle COA=60^\circ$, $\angle POQ=90^\circ$ であるとき, s の値を求めよ.

- $\boxed{\mathbf{3}}$ n を自然数とし,t を $t \ge 1$ をみたす実数とする.
 - (1) $x \ge t$ のとき,不等式

$$-\frac{(x-t)^2}{2} \le \log x - \log t - \frac{1}{t}(x-t) \le 0$$

が成り立つことを示せ.

(2) 不等式

$$-\frac{1}{6n^3} \le \int_t^{t+\frac{1}{n}} \log x \, dx - \frac{1}{n} \log t - \frac{1}{2tn^2} \le 0$$

が成り立つことを示せ.

(3) $a_n = \sum_{k=0}^{n-1} \log\left(1 + \frac{k}{n}\right)$ とおく. $\lim_{n \to \infty} (a_n - pn) = q$ をみたすような 実数 p, q の値を求めよ.

 $oxed{4}$ 整数 a,b,c に関する次の条件 (*) を考える.

$$\int_a^c (x^2 + bx) dx = \int_b^c (x^2 + ax) dx \quad \cdots \quad (*)$$

- (1) 整数 a,b,c が (*) および $a \neq b$ をみたすとき,c は 3 の倍数であることを示せ.
- (2) c = 3600 のとき, (*) および a < b をみたす整数の組 (a,b) の個数を求めよ.

5 次の問いに答えよ.

- (1) a を実数とする. x についての方程式 $x \tan x = a$ の実数解のうち, $|x| < \frac{\pi}{2} \ \,$ をみたすものがちょうど 1 個あることを示せ.
- (2) 自然数 n に対し, $x \tan x = n\pi$ かつ $|x| < \frac{\pi}{2}$ をみたす実数 x を x_n とおく.t を $|t| < \frac{\pi}{2}$ をみたす実数とする.このとき,曲線 $C: y = \sin x$ 上の点 $P(t, \sin t)$ における接線が,不等式 $x \ge \frac{\pi}{2}$ の表す領域に含まれる点においても曲線 C と接するための必要十分条件は,t が x_1, x_2, x_3, \ldots のいずれかと等しいことであることを示せ.