$oxed{1}$ r を正の実数とする.複素数平面上で,点 z が点 $\dfrac{3}{2}$ を中心とする半径 r の円周上を動くとき,

z + w = zw

を満たす点wが描く図形を求めよ.

- $\alpha = \frac{2\pi}{7}$ とする。以下の問いに答えよ。
 - (1) $\cos 4\alpha = \cos 3\alpha$ であることを示せ。
 - (2) $f(x) = 8x^3 + 4x^2 4x 1$ とするとき, $f(\cos \alpha) = 0$ が成り立つことを示せ。
 - (3) $\cos \alpha$ は無理数であることを示せ。

国 正の実数 t に対し,座標平面上の 2 点 P(0,t) と $Q\left(\frac{1}{t},0\right)$ を考える。 t が $1 \le t \le 2$ の範囲を動くとき,座標平面内で線分 PQ が通過する部分を 図示せよ。

- $\boxed{oldsymbol{4}}$ $f(x) = \log(x+1) + 1$ とする。以下の問いに答えよ。
 - (1) 方程式 f(x) = x は、x > 0 の範囲でただ 1 つの解をもつことを示せ。
 - (2) (1) の解を α とする。実数 x が $0 < x < \alpha$ を満たすならば、次の不等式が成り立つことを示せ。

$$0 < \frac{\alpha - f(x)}{\alpha - x} < f'(x)$$

(3) 数列 $\{x_n\}$ を

$$x_1 = 1$$
, $x_{n+1} = f(x_n)$ $(n = 1, 2, 3, ...)$

で定める。このとき、すべての自然数 n に対して、

$$\alpha - x_{n+1} < \frac{1}{2}(\alpha - x_n)$$

が成り立つことを示せ。

(4) (3) の数列 $\{x_n\}$ について、 $\lim_{n\to\infty}x_n=\alpha$ を示せ。

5 座標平面において, t を媒介変数として

$$x = e^t \cos t + e^{\pi}, \quad y = e^t \sin t \quad (0 \le t \le \pi)$$

で表される曲線を C とする. 曲線 C と x 軸で囲まれた部分の面積を求めよ.