- **1** *n* を 2 以上の自然数とする。
 - (1) $0 \le x \le 1$ のとき,次の不等式が成り立つことを示せ。

$$\frac{1}{2}x^n \le (-1)^n \left\{ \frac{1}{x+1} - 1 - \sum_{k=2}^n (-x)^{k-1} \right\} \le x^n - \frac{1}{2}x^{n+1}$$

(2)
$$a_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$
 とするとき、次の極限値を求めよ。

$$\lim_{n\to\infty} (-1)^n n(a_n - \log 2)$$

2 平面上の 3 点 O, A, B が

 $|2\overrightarrow{OA}+\overrightarrow{OB}|=|\overrightarrow{OA}+2\overrightarrow{OB}|=1$ かつ $(2\overrightarrow{OA}+\overrightarrow{OB})\cdot(\overrightarrow{OA}+\overrightarrow{OB})=rac{1}{3}$ をみたすとする。

- $(1)~(2\overrightarrow{OA}+\overrightarrow{OB})\cdot(\overrightarrow{OA}+2\overrightarrow{OB})$ を求めよ。
- (2) 平面上の点 P が

$$|\overrightarrow{OP} - (\overrightarrow{OA} + \overrightarrow{OB})| \leqq \frac{1}{3} \quad \text{fig.} \quad \overrightarrow{OP} \cdot (2\overrightarrow{OA} + \overrightarrow{OB}) \leqq \frac{1}{3}$$

をみたすように動くとき, $|\overrightarrow{OP}|$ の最大値と最小値を求めよ。

 $oxed{3}$ Pを座標平面上の点とし、点 Pの座標を (a,b) とする。 $-\pi \leq t \leq \pi$ の 範囲にある実数 t のうち、曲線 $y = \cos t$ 上の点 $(t,\cos t)$ における接線が点 P を通るという条件をみたすものの個数を N(P) とする。N(P) = 4 かつ $0 < a < \pi$ をみたすような点 P の存在範囲を座標平面上に図示せよ。

- 4 a,b を $a^2+b^2>1$ かつ $b\neq 0$ をみたす実数の定数とする。座標空間の点 A (a,0,b) と点 P (x,y,0) をとる。点 O (0,0,0) を通り直線 AP と垂直な平面を α とし、平面 α と直線 AP との交点を Q とする。
 - (1) $(\overrightarrow{AP}\cdot\overrightarrow{AO})^2=|\overrightarrow{AP}|^2|\overrightarrow{AQ}|^2$ が成り立つことを示せ。
 - (2) $|\overrightarrow{OQ}|=1$ をみたすように点 P (x,y,0) が xy 平面上を動くとき,点 P の軌跡を求めよ。

 $oxed{5}$ 1個のさいころを n 回投げて,k 回目に出た目を a_k とする。 b_n を

$$b_n = \sum_{k=1}^n a_1^{n-k} a_k$$

により定義し、 b_n が7の倍数となる確率を p_n とする。

- $(1) p_1, p_2$ を求めよ。
- (2) 数列 $\{p_n\}$ の一般項を求めよ。