1

以下の各問いに答えよ。ただし π は円周率を表す。

(1) 複素数 z が $1 + z + z^2 + z^3 + z^4 = 0$ を満たすとき

$$(1-z)(1-z^2)(1-z^3)(1-z^4)$$

の値を求めよ。

- (2) 絶対値 1, 偏角 2θ $(0 \le \theta < \pi)$ の複素数 ω に対して $r = |1 \omega|$ とおくとき, $\sin \theta$ を r を用いて表せ。
- $(3) \, \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5}\, の値を求めよ。$

 $\mathbf{2}$

以下の各問いに答えよ。

- (1) 座標平面上で 3 点 O(0,0), A(1,0), B(0,1) を頂点にもつ正方形を考える。 実数 t ($0 \le t \le 2$) に対して,2 点 P(t,0), Q(0,t) を通る直線とこの正方形が交わってできる線分の長さを L(t) とする。このとき,関数 L(t) のグラフを描き,定積分 $\int_0^2 L(t)dt$ の値を求めよ。
- (2) 座標空間において 4 点 O(0,0,0), A(1,0,0), B(0,1,0), C(0,0,1) を頂点にもつ立方体を考える。実数 t ($0 \le t \le 3$) に対して、3 点 P(t,0,0), Q(0,t,0), R(0,0,t) を通る平面によるこの立方体の切り口の面積を S(t) とする。このとき、関数 S(t) の最大値を求めよ。
- (3) 定積分 $\int_0^3 S(t)dt$ の値を求めよ。

数の集合 A に関する以下の諸条件を考える。ただし n,k は $n \ge k \ge 0$ を満たす整数とし, x,y は任意の数とする。

条件 Z:x が A の要素ならば x は整数。

条件 $P_n: x$ が A の要素ならば $1 \le x$ かつ $x \le n_0$ 。

条件 Q_k : A はちょうど k 個の要素からなる。

条件 R: x, y が A の要素ならば $x-y+1 \neq 0$ 。

条件 $S_{n,k}$: A は 3 条件 Z, P_n , Q_k を満たす。

条件 $T_{n,k}$: A は条件 $S_{n,k}$ および条件 R を満たす。

条件 $S_{n,k}$ を満たすような集合 A の個数を f(n,k) と表し、条件 $T_{n,k}$ を満たすような集合 A の個数を g(n,k) と表す。このとき以下の各問いに答えよ。

- (1) f(n,0) および f(n,n) を求めよ。また, $n > k \ge 1$ のとき f(n,k) を f(n-1,k) と f(n-1,k-1) を用いて表せ。
- (2) $n > k \ge 1$ のとき g(n,k) を g(n-1,k) と g(n-2,k-1) を用いて表せ。
- (3) $m \ge 1$, $\ell \ge 0$ なる整数 m, ℓ に対して整数 $h(m,\ell)$ を

$$h(m,\ell) = q(m+\ell-1,\ell)$$

で定義する。このとき h(m,0) および h(m,m) を求めよ。また,m> $\ell \geq 1$ のとき $h(m,\ell)$ を $h(m-1,\ell)$ と $h(m-1,\ell-1)$ を用いて表せ。

(4) g(12,4) を求めよ。