1 以下の各問いに答えよ。

- (1) 次の条件 (a)、(b) を同時に満たす複素数 z をすべて求め、複素数平面上に図示せよ。ただし \overline{z} は z の共役複素数を表す。
 - (a) $|z| \le 1$
 - (b) $z + \overline{z}$ および $z\overline{z}$ はともに整数。
- (2) 次の条件 (c)、(d) を同時に満たす点 P(p,q) をすべて求め、座標平面上 に図示せよ。
 - (c) p,q は整数。
 - (d) |z|>1 を満たす任意の複素数 z に対して $z^2-pz+q\neq 0$ が成立 する。

M を逆行列を持つ 2 次の正方行列とする。数列 $\{x_n\}$ 、 $\{y_n\}$ を

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} x_n \\ y_n \end{pmatrix} = M \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix} \quad (n = 1, 2, 3, \dots)$$

によって定義し、 (x_n,y_n) を座標とする平面上の点を P_n とする。このとき以下の各問いに答えよ。

- (1) P_1 が P_0 と異なるとき、すべての自然数 n に対して P_n は P_{n-1} と異なることを示せ。
- (2) 定数 θ を用いて $(x_1, y_1) = (\cos \theta, \sin \theta), (x_2, y_2) = (\cos 2\theta, \sin 2\theta)$ と表 されているとき,すべての自然数 n に対して

$$(x_n, y_n) = (\cos n\theta, \sin n\theta)$$

となることを示せ。

$$(3) \ A(1,0), \ B\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \succeq C, D, E, F \ \ref{eq:continuous}$$

$$\overrightarrow{OC} = \overrightarrow{OB} - \overrightarrow{OA}, \quad \overrightarrow{OD} = -\overrightarrow{OA},$$

$$\overrightarrow{OE} = -\overrightarrow{OB}, \quad \overrightarrow{OF} = \overrightarrow{OA} - \overrightarrow{OB}$$

を満たす点とする。ここで O は原点を表す。以下の条件 (a)、(b)、(c) がすべて成立しているとき、行列 M を求めよ。

- (a) すべての自然数 n に対して、 P_n は A,B,C,D,E,F のいずれかと一致する。
- (b) P_1 は B と一致する。
- (c) P_6 は A とは異なる。

3

正の定数 a、b に対して、曲線 C を媒介変数 t を用いて次式で定義する。

$$C: x = a\cos^3 t, y = b\sin^3 t \quad \left(0 \le t \le \frac{\pi}{2}\right)$$

このとき以下の各問いに答えよ。

- (1) 曲線 C 上の点 $P(a\cos^3\theta,b\sin^3\theta),\,0<\theta<\frac{\pi}{2},\,$ における C の接線と x 軸および y 軸との交点をそれぞれ Q、R とする。このとき線分 QR の長さ $l(\theta)$ を求めよ。
- (2) $\frac{d}{d\theta}\{l(\theta)\}^2$ を求めよ。
- (3) 曲線 C の長さを求めよ。