1 (60点)

e を自然対数の底とし、数列 $\{a_n\}$ を次式で定義する。

$$a_n = \int_1^e (\log x)^n dx \quad (n = 1, 2, \dots)$$

(1) $n \ge 3$ のとき、次の漸化式を示せ。

$$a_n = (n-1)(a_{n-2} - a_{n-1})$$

- (2) $n \ge 1$ に対し $a_n > a_{n+1} > 0$ なることを示せ。
- (3) $n \ge 2$ のとき、以下の不等式が成立することを示せ。

$$a_{2n} < \frac{3 \cdot 5 \cdots (2n-1)}{4 \cdot 6 \cdots (2n)} (e-2)$$

2 (50 点)

1 から 6 までの目が $\frac{1}{6}$ の確率で出るサイコロを振り、1 回目に出る目を a、2 回目に出る目を β とする。2 次式 $(x-a)(x-\beta)=x^2+sx+t$ を f(x) とおき $f(x)^2=x^4+ax^3+bx^2+cx+d$ とする。

- (1) s および t の期待値を求めよ。
- (2) a,b,c および d の期待値を求めよ。

3 (70点)

D を半径 1 の円盤,C を xy 平面の原点を中心とする半径 1 の円周とする。 D がつぎの条件 (a), (b) を共に満たしながら xyz 空間内を動くとき,D が通過する部分の体積を求めよ。

- (a) D の中心は C 上にある。
- (b) D が乗っている平面は常にベクトル (0,1,0) と直交する。

4 (70 点)

実数 x, y が $x^2 + y^2 \le 1$ を満たしながら変化するとする。

- (1) $s=x+y,\,t=xy$ とするとき,点 (s,t) の動く範囲を st 平面上に図示せよ。
- (2) 負でない定数 $m \ge 0$ をとるとき, xy + m(x+y) の最大値, 最小値を m を用いて表せ。