$\mid \mathbf{1} \mid$

座標空間内に5点

P(0,0,h), Q(t,0,0), R(0,t,0), S(-t,0,0), T(0,-t,0)

をとる。ここで t,h は 0 < t < 1,h > 0 を満たす実数である。また点 A(1,1,0) と点 Q を結ぶ線分の長さは線分 PQ の長さと等しいとする。このとき以下の各間いに答えよ。

- (1) 四角錐 PQRST の表面積を t を用いて表せ。
- (2) h を t を用いて表せ。
- (3) t が 0 < t < 1 の範囲で変化するとき、四角錐 PQRST の体積の最大値を求めよ。

 $\mathbf{2}$

以下の各問いに答えよ。ただしtは $0 < t < \pi$ を満たす実数とする。

(1) 次の等式を証明せよ。

$$\left(\cos\frac{t}{2}\right)\left(\cos\frac{t}{4}\right)\left(\cos\frac{t}{8}\right) = \frac{\sin t}{8\sin\frac{t}{8}}$$

(2) 次のように定義される数列 $\{a_n\}$ の極限値 $\lim_{n\to\infty}a_n$ を t を用いて表せ。

$$a_1 = \cos \frac{t}{2}, \quad a_n = a_{n-1} \left(\cos \frac{t}{2^n}\right) \quad (n = 2, 3, \ldots)$$

(3) 数列 $\{b_n\}$, $\{c_n\}$ を次のように定義する。

$$b_1 = \sqrt{\frac{1}{2}}, \quad b_n = \sqrt{\frac{1 + b_{n-1}}{2}} \quad (n = 2, 3, ...)$$

$$c_1 = \sqrt{\frac{1}{2}}, \quad c_n = c_{n-1}b_n \quad (n = 2, 3, ...)$$

このとき $\lim_{n\to\infty} c_n$ を求めよ。

3

微分可能な関数 f(x), g(x) が次の 4 条件を満たしている。

- (a) 任意の正の実数 x について f(x) > 0, g(x) > 0
- (b) 任意の実数 x について f(-x) = f(x), g(-x) = -g(x)
- (c) 任意の実数 x, y について f(x+y) = f(x)f(y) + g(x)g(y)
- (d) $\lim_{x \to 0} \frac{g(x)}{x} = 2$

このとき以下の各問いに答えよ。

- (1) f(0) および g(0) を求めよ。
- (2) $|f(x)|^2 |g(x)|^2$ を求めよ。
- (3) $\lim_{x\to 0} \frac{1-f(x)}{x^2}$ を求めよ。
- (4) f(x) の導関数を g(x) を用いて表せ。
- (5) 曲線 y = f(x)g(x), 直線 x = a (a > 0) および x 軸で囲まれる図形の面積が 1 のとき f(a) の値を求めよ。