$\mid \mathbf{1} \mid$

自然数 n に対し、3 個の数字 1、2、3 から重複を許して n 個並べたもの (x_1,x_2,\cdots,x_n) の全体の集合を S_n とおく。 S_n の要素 (x_1,x_2,\cdots,x_n) に対し、次の 2 つの条件を考える。

- 条件 C_{12} : $1 \le i < j \le n$ である整数 i, j の組で、 $x_i = 1$ 、 $x_j = 2$ を満たすものが少なくとも 1 つ存在する。
- 条件 C_{123} : $1 \le i < j < k \le n$ である整数 i, j, k の組で、 $x_i = 1$ 、 $x_j = 2$ 、 $x_k = 3$ を満たすものが少なくとも 1 つ存在する。

例えば、 S_4 の要素 (3,1,2,2) は条件 C_{12} を満たすが、条件 C_{123} は満たさない。

 S_n の要素 (x_1,x_2,\cdots,x_n) のうち、条件 C_{12} を満たさないものの個数を f(n)、条件 C_{123} を満たさないものの個数を g(n) とおく。このとき以下の各問いに答えよ。

- (1) f(4) と g(4) を求めよ。
- (2) f(n) を n を用いて表せ。
- (3) g(n+1) を g(n) と f(n) を用いて表せ。
- (4) g(n) を n を用いて表せ。

2

 $0 < heta < rac{\pi}{2}$ を満たす実数 heta に対し、xyz 空間内の 4 点

$$A(\cos\theta, \cos\theta, \sin\theta), \quad B(-\cos\theta, -\cos\theta, \sin\theta),$$

 $C(\cos\theta, -\cos\theta, -\sin\theta), \quad D(-\cos\theta, \cos\theta, -\sin\theta)$

を頂点とする四面体の体積を $V(\theta)$ 、この四面体の xz 平面による切り口の面積 を $S(\theta)$ とする。このとき以下の各問いに答えよ。

- (1) $S\left(\frac{\pi}{6}\right)$ 、 $V\left(\frac{\pi}{6}\right)$ をそれぞれ求めよ。
- (2) $0 < \theta < \frac{\pi}{2}$ における $S(\theta)$ の最大値を求めよ。 (3) $0 < \theta < \frac{\pi}{2}$ における $V(\theta)$ の最大値を求めよ。

 $\mid 3 \mid$

a を正の実数、k を自然数とし、x>0 で定義される関数

$$f(x) = \int_{a}^{x} \frac{k + \sqrt[k]{u}}{ku} \, du$$

を考える。このとき以下の各問いに答えよ。

- (1) f(x) の増減および凹凸を調べ、y = f(x) のグラフの概形をかけ。
- (2) S を正の実数とするとき、f(p)=S を満たす実数 p がただ 1 つ存在する ことを示せ。
- (3) $b=\frac{k}{k+\sqrt[k]{a}}$ とおくとき、(2) の S、p について、次の不等式が成立することを示せ。

$$1 + bS$$