- 1 n を 2 以上の自然数とし、ひとつのサイコロを n 回くり返し投げるとする。 n 以下の自然数 k について、k 回目に 1 から 4 の目が出たら $a_k = 1$ 、5 または 6 の目が出たら $a_k = 0$ として、数列 $\{a_k\}$ を定義する。 さらに数列 $\{b_k\}$ を、 $b_1 = 0$ 、2 以上 n 以下の自然数 k について $b_k = (a_k + a_{k-1})(2 a_k a_{k-1})$ と定義する。このとき以下の各問いに答えよ。
 - (1) k を 2 以上 n 以下の自然数とする。 $b_k=0$ となる確率を求めよ。
 - (2) $b_2 = b_3 = \cdots = b_n = 1$ となる確率を n を用いて表せ。

$$(3)$$
 n が 5 以上のとき、 $S_n=rac{b_2}{2}+rac{b_3}{2^2}+\cdots+rac{b_n}{2^{n-1}}$ とおく。このとき $rac{5}{8} \leqq S_n < rac{15}{16}$

となる確率を求めよ。

- **2** 三角形 ABC において、頂点 A、B、C の角の大きさをそれぞれ A、B、C、対辺の長さをそれぞれ a、b、c で表す。また a、b、c は、この順で正または 0 の公差をもつ等差数列をなすとする。このとき以下の各問いに答えよ。
 - (1) $C = \frac{2\pi}{3}$ のとき、 $\cos A$ の値を求めよ。
 - (2) C = 2A のとき、 $\cos A$ の値を求めよ。
 - (3) $C = A + \frac{\pi}{3}$ のとき、 $\cos A$ の値を求めよ。

 $oxedsymbol{3}$ a と b を実数として、xy 平面において、2 つの曲線

$$C_1: y = x^4 - x^2$$

$$C_2: y = a(x^2 - 1)$$

および直線

$$\ell: y = b$$

を考える。ただし C_1 と ℓ は相異なる 4 点で交わるとする。また、 C_1 と C_2 は $0 < x_0 < 1$ となる交点 $P(x_0,y_0)$ をひとつもつとする。このとき以下の各問いに答えよ。

- (1) a のとりうる値の範囲を求めよ。また x_0 、 y_0 を a を用いて表せ。
- (2) b のとりうる値の範囲を求めよ。また C_1 と ℓ の交点の x 座標を b を用いて表せ。
- (3) C_1 と ℓ で囲まれる領域のうち、 $y \leq b$ の部分を y 軸のまわりに回転してできる立体の体積を V_1 とする。 V_1 を b を用いて表せ。
- (4) $b=y_0$ として、 C_2 と ℓ で囲まれる領域のうち、 $y \leq y_0$ の部分を y 軸のまわりに回転してできる立体の体積を V_2 とする。 $3V_1=V_2$ のとき、a の値を求めよ。