$oxedsymbol{1}$ n を自然数とする。整数 i,j に対し、xy 平面上の点 $P_{i,j}$ の座標を

$$\left(\cos\frac{2\pi}{n}i + \cos\frac{2\pi}{n}j , \sin\frac{2\pi}{n}i + \sin\frac{2\pi}{n}j\right)$$

で与える。さらに、i,j を動かしたとき、 $P_{i,j}$ の取り得る異なる座標の個数を S_n とする。このとき、以下の各問いに答えよ。

- (1) n=3 のとき、 $\triangle P_{0,0}P_{0,1}P_{0,2}$ および $\triangle P_{1,1}P_{1,2}P_{1,0}$ を同一座標平面上 に図示せよ。
- (2) S4 を求めよ。
- (3) 平面上の異なる 2点 A、B に対して、AQ = BQ = 1 であるような同一 平面上の点 Q はいくつあるか。AB = d の値で場合分けして答えよ。
- (4) S_n を n を用いて表せ。

- xy 平面上の放物線 $P: y^2 = 4x$ 上に異なる 2 点 A, B をとり、A, B それぞれにおいて P への接線と直交する直線を n_A , n_B とする。a を正の数として、点 A の座標を $(a, \sqrt{4a})$ とするとき、以下の各問いに答えよ。
 - (1) n_A の方程式を a を用いて表せ。
 - (2) 直線 AB と直線 $y=\sqrt{4a}$ とがなす角の 2 等分線のひとつが、 n_A に一致 するとき、直線 AB の方程式を a を用いて表せ。
 - (3) (2) のとき、点 B を通る直線 r_B を考える。 r_B と直線 AB とがなす角の 2 等分線のひとつが、 n_B に一致するとき、 r_B の方程式を a を用いて表せ。
 - (4) (3) のとき、直線 AB と放物線 P で囲まれた図形の面積を S_1 とし、P と 直線 $y=\sqrt{4a}$ 、直線 x=-1 および (3) の r_B で囲まれた図形の面積を S_2 とする。a を変化させたとき、 $\frac{S_1}{S_2}$ の最大値を求めよ。

- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$
 - f(0) = 0
 - 0 < x < 1 のとき f'(x) > 0
 - 0 < a < 1 を満たすすべての実数 a について、曲線 C 上の点 P(a, f(a)) における接線と直線 x = 1 との交点を Q とするとき、PQ = 1

このとき以下の各問いに答えよ。

- (1) f'(x) を求めよ。
- (2) $\int_0^{\frac{1}{2}} (1-x)f'(x)dx$ の値を求めよ。
- (3) 曲線 C と x 軸、直線 x=1、直線 $y=f\left(\frac{1}{2}\right)$ で囲まれた図形の面積を求めよ。