xy 平面上の曲線 $y=rac{1}{2}x^2$ に,点 (a , $rac{1}{2}a^2)$ (a>0) で接する円のうち,y 軸 の正の部分にも接するものを S_a とおく。a が正の実数を動くときの S_a の中心の軌跡を C,とくに S_1 の中心を P とする。

- (1) 点 P の座標を求めよ。
- (2) 点 P における曲線 C の接線の傾きを求めよ。

実数全体を定義域にもつ微分可能な関数 f(t)、g(t) が次の 6 つの条件を満たしているとする。

$$f'(t) = -f(t)g(t), \quad g'(t) = \{f(t)\}^2,$$

$$f(t) > 0, \quad |g(t)| < 1, \quad f(0) = 1, \quad g(0) = 0.$$

このとき,

$$p(t) = \{f(t)\}^2 + \{g(t)\}^2, \quad q(t) = \log \frac{1 + g(t)}{1 - g(t)}$$

とおく。

- (1) p'(t) を求めよ。
- (2) q'(t) は定数関数であることを示せ。
- (3) $\lim_{t\to\infty}g(t)$ を求めよ。
- (4) f(T)=g(T) となる正の実数 T に対して、媒介変数表示された平面曲線 $(x,y)=(f(t),g(t))\;(0\leq t\leq T)\;$ の長さを求めよ。

xy 平面上に,点 A(a,0), B(0,b), C(-a,0)(ただし 0 < a < b)をとる。点 A, B を通る直線を ℓ とし,点 C を通り線分 BC に垂直な直線を k とする。 さらに,点 A を通り y 軸に平行な直線と直線 k との交点を C_1 とし,点 C_1 を 通り x 軸に平行な直線と直線 ℓ との交点を A_1 とする。以下, $n=1,2,3,\ldots$ に対して,点 A_n を通り y 軸に平行な直線と直線 k との交点を C_{n+1} ,点 C_{n+1} を通り x 軸に平行な直線と直線 ℓ との交点を A_{n+1} とする。

- (1) 点 A_n , C_n の座標を求めよ。
- (2) $\triangle CBA_n$ の面積 S_n を求めよ。
- (3) $\lim_{n \to \infty} \frac{BA_n}{BC}$ を求めよ。

> n を正の整数とし, C_1, \ldots, C_n を n 枚の硬貨とする。各 $k=1, \ldots, n$ に対 し、硬貨 C_k を投げて表が出る確率を p_k 、裏が出る確率を $1-p_k$ とする。こ のn枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、という ゲームを考える。

- $(1) \ p_k = \frac{1}{3} \ (k=1,\dots,n) \ \text{のとき, } \text{このゲームで成功する確率} \ X_n \ \text{を求めよ}.$ $(2) \ p_k = \frac{1}{2(k+1)} \ (k=1,\dots,n) \ \text{のとき, } \text{このゲームで成功する確率} \ Y_n \ \text{を$
- 求めよ。
- (3) n = 3m (m は正の整数) で、k = 1, ..., 3m に対して

$$p_k = \begin{cases} \frac{1}{3m} & (k = 1, ..., m) \\ \\ \frac{2}{3m} & (k = m + 1, ..., 2m) \\ \\ \frac{1}{m} & (k = 2m + 1, ..., 3m) \end{cases}$$

とする。このゲームで成功する確率を Z_{3m} とするとき, $\lim_{m o \infty} Z_{3m}$ を求 めよ。

整数の組 (a,b) に対して 2 次式 $f(x)=x^2+ax+b$ を考える。方程式 f(x)=0 の複素数の範囲のすべての解 α に対して $\alpha^n=1$ となる正の整数 n が存在するような組 (a,b) をすべて求めよ。