- $\boxed{1}$ a, b を正の数とする. 2つの曲線 $y = x^3 + bx^2, y = ax^2 + abx$ によって囲まれる 2 つの部分の面積の和を S とする.
 - (1) S を a と b で表せ.
 - (2) a+b=1 のとき、S を最小にする a, b の値と、そのときの S の値を求めよ.

- 図数 $f(x) = \frac{\sqrt{1+2x}-1}{x} \ (x \neq 0)$ について、 $a = \lim_{x \to 0} f(x)$ 、 $b = \lim_{x \to 0} f'(x)$ と おく。
 - (1) a,b の値を求めよ。
 - (2) $-\frac{1}{2} \le x$ の範囲で、3 つの関数 $\sqrt{1+2x}$, 1+ax, $1+ax+bx^2$ の大小 関係を調べ、これらの関数のグラフを同一の xy 平面上に描け。

3 1から200までの整数が1つずつ記入された200枚のカードの入った箱がある.この箱から1枚のカードを無作為に抜き出して,それに書かれた数が奇数であればその数を得点とし、偶数の場合は奇数になるまで2で割って得られる奇数を得点とする.例えば、抜き出したカードの数が28であれば、これを2で2回割って得られる7が得点となる.1枚のカードを抜き出したときの得点の期待値を求めよ.

- 型 四面体 OABC において、 $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, $\vec{c} = \overrightarrow{OC}$ とおく。線分 OA, OB, OC, BC, CA, AB の中点をそれぞれ, L, M, N, P, Q, R とし, $\vec{p} = \overrightarrow{LP}$, $\vec{q} = \overrightarrow{MQ}$, $\vec{r} = \overrightarrow{NR}$ とおく。
 - (1) 線分 *LP*, *MQ*, *NR* は 1 点で交わることを示せ。
 - (2) \vec{a} , \vec{b} , \vec{c} を \vec{p} , \vec{q} , \vec{r} を用いて表せ。
 - (3) 直線 LP, MQ, NR が互いに直交するとする。X を $\overrightarrow{AX} = \overrightarrow{LP}$ となる空間の点とするとき,四面体 XABC の体積および四面体 OABC の体積を $|\vec{p}|$, $|\vec{q}|$, $|\vec{r}|$ を用いて表せ。

- 多数 z=x+yi, w=u+vi (ただし, x,y,u,v は実数) は |z|=|w|=1 を満たし, yv<0 とする。|1+z+w|<1 となるための必要十分条件を x と u を用いて表せ。
- 6
- (1) n を正の整数とする。 $t \ge 0$ のとき,不等式 $e^t \ge \frac{t^n}{n!}$ が成り立つことを数学的帰納法で示せ。
- (2) 極限 $I_m = \lim_{t \to \infty} \int_0^t x^m e^{-x} dx \ (m = 0, 1, 2, \cdots)$ を求めよ。