国 実数
$$a,b,c,d$$
 に対し、 $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 、 $E=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ とおく。

$$(1)$$
 $A^2=egin{pmatrix} lpha & eta \ \gamma & \delta \end{pmatrix}$ のとき, $lpha\delta-eta\gamma\geq 0$ を示せ。

- (2) A が $A^4 = E$ を満たすならば、 $A^2 = E$ または $A^2 = -E$ となることを示せ。
- (3) $B=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}$ とする。A が $A^2=-E$ および BA=-AB を満たすとき,b,c,d を a の式で表せ。また,このとき $AB=A^mBA^n$ が成立するような整数の組 (m,n) で $1\leq m\leq 3, 1\leq n\leq 3$ の範囲にあるものをすべて求めよ。

| 2 | ₂つの関数を

 $t = \cos \theta + \sqrt{3} \sin \theta, \quad y = -4 \cos 3\theta + \cos 2\theta - \sqrt{3} \sin 2\theta + 2 \cos \theta + 2\sqrt{3} \sin \theta$ とする。

- $(1) \cos 3\theta$ を t の関数で表せ。
- (2) y を t の関数で表せ。
- (3) $0^{\circ} \le \theta \le 180^{\circ}$ のとき, y の最大値, 最小値とそのときの θ の値を求めよ。

3 関数 $f(x) = 4x - x^2$ に対し、数列 $\{a_n\}$ を

$$a_1 = c$$
, $a_{n+1} = \sqrt{f(a_n)}$ $(n = 1, 2, 3, \cdots)$

で与える。ただし、c は 0 < c < 2 を満たす定数である。

- $(1) \ a_n < 2, \quad a_n < a_{n+1} \quad (n=1,2,3,\cdots)$ を示せ。
- $(2) \ 2 a_{n+1} < \frac{2-c}{2}(2-a_n) \quad (n=1,2,3,\cdots)$ を示せ。
- (3) $\lim_{n\to\infty}a_n$ を求めよ。

- 4 xyz 空間内に 2 点 P(u,u,0), $Q(u,0,\sqrt{1-u^2})$ を考える。u が 0 から 1 まで動くとき,線分 PQ が通過してできる曲面を S とする。
 - (1) 点 (u,0,0) $(0 \le u \le 1)$ を線分 PQ の距離を求めよ。
 - (2) 曲面 S を x 軸のまわりに 1 回転させて得られる立体の体積を求めよ。

复素数平面上で、相異なる 3 点 1, α , α^2 は実軸上に中心をもつ同一円周上にある。このような α の存在する範囲を複素数平面上に図示せよ。さらに、この円の半径を $|\alpha|$ を用いて表せ。

- **6** 対数は自然対数であり、e はその底とする。関数 $f(x) = (x+1)\log\frac{x+1}{x}$ に対して、次の問いに答えよ。
 - (1) f(x) は x > 0 で単調減少関数であることを示せ。
 - (2) $\lim_{x \to +0} f(x)$ および $\lim_{x \to +\infty} f(x)$ を求めよ。
 - (3) f(x)=2 を満たす x が $\frac{1}{e^2} < x < 1$ の範囲に存在することを示せ。