1 $0 < t < \frac{1}{2}$ とし、平面上のベクトル \overrightarrow{a} 、 \overrightarrow{b} と単位ベクトル \overrightarrow{e} が

(i)
$$(1-t)\overrightarrow{a} + t\overrightarrow{b} = \overrightarrow{e}$$

(ii)
$$(1-t)(\overrightarrow{a} + \overrightarrow{e}) = t(\overrightarrow{b} + \overrightarrow{e})$$

を満たすとする. さらに平面上のベクトル \overrightarrow{x} があって, $\overrightarrow{x}-\overrightarrow{d}$ と $\overrightarrow{x}-\overrightarrow{b}$ が 垂直で長さの比が t:1-t となるとする. このとき, 内積 $\overrightarrow{x}\cdot\overrightarrow{e}$ を t で表せ.

- 2 すべての内角が 180° より小さい四角形 ABCD がある. 辺の長さが $AB=BC=r,\ AD=2r$ とする. さらに、辺 CD 上に点 E があり、3 つの三角形 $\triangle ABC$ 、 $\triangle ACE$ 、 $\triangle ADE$ の面積はすべて等しいとする. $\alpha=\angle BAC$ 、 $\beta=\angle CAD$ とおく.
 - (1) $\alpha = \beta$ を示せ.
 - (2) $\cos \angle DAB = \frac{3}{5}$ であるとするとき、 $\sin \angle CAE$ の値を求めよ.

- 3 1から n までの数字を1つずつ書いた n 枚のカードが箱に入っている。この箱から無作為にカードを1枚取り出して数字を記録し、箱に戻すという操作を繰り返す。ただし、k 回目の操作で直前のカードと同じ数字か直前のカードよりも小さい数字のカードを取り出した場合に、k を得点として終了する。
 - (1) $2 \le k \le n+1$ を満たす自然数 k について、得点が k となる確率を求めよ。
 - (2) 得点の期待値を n で表した式を f(n) とするとき、f(n) および極限値 $\lim_{n \to \infty} f(n)$ を求めよ。

 $oxed{4}$ a を負の実数とし,放物線 $C_1: y=ax^2+bx+c$ を考える. C_1 が曲線

$$C_2: y = \begin{cases} x^2 - x + \frac{3}{4}, & (x > 0 \text{ のとき}) \\ x^2 + 2x + \frac{3}{4}, & (x \le 0 \text{ のとき}) \end{cases}$$

と 2 点で接するとき、 C_1 と C_2 で囲まれた図形の面積を a で表せ.

|5| a,b を $a^2
eq b^2$ を満たす 0 でない実数とし, A_n を次の関係式で定まる 2 次の 正方行列とする。

$$A_{1} = \begin{pmatrix} 0 & a^{-1} \\ 0 & 0 \end{pmatrix}, \quad A_{n+1} = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} + \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix} A_{n} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (n = 1, 2, 3, \cdots)$$

(1) 行列
$$C = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$
 で $C \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} + \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix} C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ を満たすものを求めよ。

- (2) A_n を a,b,n で表せ。
- (3) $n \to \infty$ のとき A_n のすべての成分が収束するための条件を求めよ。

 $\boxed{6}$ a を 0 < a < 1 を満たす定数とし, $f(x) = \frac{\cos 2x - 2}{a\cos x + 1}$ とする.

- (1) f(x) が $0 \le x \le \pi$ で減少関数となる a の範囲を求めよ.
- (2) f(x) の $0 \le x \le \pi$ における最大値は f(0) であることを示せ.