- 1 n を 2 以上の自然数とし、整式 x^n を $x^2 6x 12$ で割った余りを $a_n x + b_n$ とする.
 - (1) a_2, b_2 を求めよ.
 - (2) a_{n+1}, b_{n+1} を a_n と b_n を用いて表せ.
 - (3) 各n に対して、 a_n と b_n の公約数で素数となるものをすべて求めよ.

- 2 $\angle C$ を直角とする直角三角形 ABC に対して、 $\angle A$ の二等分線と線分 BC の交点を D とする.また、線分 AD,DC,CA の長さはそれぞれ 5,3,4 とする. $\angle A=\theta$ とおくとき、次の問いに答えよ.
 - (1) $\sin \theta$ を求めよ.
 - (2) $\theta<rac{5}{12}\pi$ を示せ、ただし、 $\sqrt{2}=1.414\ldots,\sqrt{3}=1.732\ldots$ を用いてもよい.

- $oxed{3}$ 平面の 3 点 $A(0,0), B(2,0), C(1,\sqrt{3})$ を頂点とする $\triangle ABC$ に対して以下の問いに答えよ.
 - (1) $0 \le a \le \sqrt{3}$ を満たす定数 a に対して,点 P(x,a) が $\triangle ABC$ に含まれる ための x の範囲を求めよ.
 - (2) (1) の定数 a に対して,(1) で求められた範囲を x が動くとき, $AP^2 + BP^2 + CP^2$ の最小値と,そのときの x の値を求めよ.
 - (3) 点 P(x,y) が $\triangle ABC$ に含まれるとき, $AP^2+BP^2+CP^2$ の最小値と, そのときの点 P の座標 (x,y) を求めよ.

関数 f(x) が, $f(x)=x^2-x\int_0^2|f(t)|dt$ を満たしているとする.このとき, f(x) を求めよ.