- $oxed{1}$ n を 2 以上の自然数とし,整式 x^n を $x^2-6x-12$ で割った余りを a_nx+b_n とする.
 - (1) a_2, b_2 を求めよ.
 - (2) a_{n+1} , b_{n+1} を a_n と b_n を用いて表せ.
 - (3) 各n に対して、 a_n と b_n の公約数で素数となるものをすべて求めよ.

- 2 $\angle C$ を直角とする直角三角形 ABC に対して、 $\angle A$ の二等分線と線分 BC の交点を D とする. また、線分 AD,DC,CA の長さはそれぞれ 5,3,4 とする. $\angle A=\theta$ とおくとき、次の問いに答えよ.
 - (1) $\sin \theta$ を求めよ.
 - (2) $\theta<rac{5}{12}\pi$ を示せ、ただし、 $\sqrt{2}=1.414\ldots,\sqrt{3}=1.732\ldots$ を用いてもよい.

 $\boxed{3}$ 自然数 n に対し,方程式

$$\frac{1}{x^n} - \log x - \frac{1}{e} = 0$$

を考える。ただし、対数は自然対数であり、e はその底とする。

- (1) 上の方程式は $x \ge 1$ にただ一つの解をもつことを示せ。
- (2) (1) の解を x_n とする。このとき,

$$\lim_{n \to \infty} x_n = 1$$

を示せ。

| 4 | 平面上に 4 点 (0,0), (4,0), (4,4), (0,4) を頂点とする正方形 K を考える。点 (1,2) を通る各直線に対して,その K に含まれる部分を l とおく。

- (1) lの長さの最大値と、それを与える直線の方程式を求めよ。
- (2) l の長さの最小値を求めよ。

xyz 空間において、点 (1,0,1) と点 (1,0,2) を結ぶ線分を l とし、l を z 軸のまわりに一回転してできる図形を A とする。A を x 軸のまわりに一回転してできる立体の体積を求めよ。

- 6 a > 0 に対し $I_0(a) = \int_0^a \sqrt{1+x} dx$, $I_n(a) = \int_0^a x^n \sqrt{1+x} dx$ $(n = 1, 2, \cdots)$ とおく。
 - (1) $\lim_{a\to\infty} a^{-\frac{3}{2}} I_0(a)$ を求めよ。
 - (2) 漸化式 $I_n(a) = \frac{2}{3+2n}a^n(1+a)^{\frac{3}{2}} \frac{2n}{3+2n}I_{n-1}(a)$ $(n=1,2,\cdots)$ を示せ。
 - (3) 自然数 n に対して、 $\lim_{a \to \infty} a^{-(\frac{3}{2}+n)} I_n(a)$ を求めよ。