$oxed{1}$ 多項式 f(x) について、次の条件 (i)、(ii)、(iii) を考える。

(i)
$$x^4 f\left(\frac{1}{x}\right) = f(x)$$

(ii)
$$f(1-x) = f(x)$$

(iii)
$$f(1) = 1$$

このとき、以下の問いに答えよ。

- (1) 条件 (i) をみたす多項式 f(x) の次数は 4 以下であることを示せ。
- (2) 条件 (i)、(ii)、(iii) をすべてみたす多項式 f(x) を求めよ。

- - $(1) \ k=1,2,\cdots$ のとき、ベクトル $\overrightarrow{h_k}$ と $\overrightarrow{h_{k+1}}$ の内積 $\overrightarrow{h_k}\cdot\overrightarrow{h_{k+1}}$ を n と k で表せ.
 - $(2) \ S_n = \sum_{k=1}^n \overrightarrow{h_k} \cdot \overrightarrow{h_{k+1}}$ とおくとき、極限値 $\lim_{n \to \infty} S_n$ を求めよ、ここで、自然対数の底 e について、 $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ であることを用いてもよい.

- 3 θ を $0 < \theta < \frac{2\pi}{3}$ の範囲にある実数とし、空間の 4 点 O, A, B, C が、 OA = OB = OC = 1 かつ $\angle AOB = \angle BOC = \angle COA = \theta$ をみたすとする、このとき、以下の問いに答えよ、
 - (1) \triangle ABC の重心を G とするとき, AG と OG をそれぞれ θ で表せ.
 - (2) θ を動かしたときの、O, A, B, C を頂点とする四面体の体積の最大値を求めよ.

- |4| 点 P が次のルール (i)、(ii) に従って数直線上を移動するものとする。
 - (i) 1, 2, 3, 4, 5, 6 の目が同じ割合で出るサイコロを振り、出た目の数を k とする. P の座標 a について、a>0 ならば座標 a-k の点へ移動し、a<0 ならば座標 a+k の点へ移動する.
 - (ii) 原点に移動したら終了し、そうでなければ (i) を繰り返す. このとき、以下の問いに答えよ.
 - (1) P の座標が $1, 2, \dots, 6$ のいずれかであるとき,ちょうど 3 回サイコロを振って原点で終了する確率を求めよ.
 - (2) P の座標が $1, 2, \dots, 6$ のいずれかであるとき,ちょうど m 回サイコロ を振って原点で終了する確率を求めよ.
 - (3) P の座標が 8 であるとき,ちょうど n 回サイコロを振って原点で終了する確率を求めよ.

5

a を実数として, 2 次の正方行列 A, B を次のように定める。

$$A = \begin{pmatrix} 1 & a+1 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} a & 0 \\ 2 & -a \end{pmatrix}$$

このとき、 $((\cos t)A + (\sin t)B)^2 = 0$ をみたす実数 t が存在するような a の範囲を求めよ。ただし、O は零行列とする。

6

k>1 として, $f(x)=x^2+2kx$ とおく。曲線 y=f(x) と円 $C:x^2+y^2=1$ の 2 つの交点の内で,第 1 象限にあるものを P とし,第 3 象限にあるものを Q とする。点 O(0,0),A(1,0),B(-1,0) に対して, $\alpha=\angle AOP$, $\beta=\angle BOQ$ とおくとき,以下の問いに答えよ。

- (1) k を α で表せ。
- (2) 曲線 y=f(x) と円 C で囲まれる 2 つの図形の内で, y=f(x) の上側にあるものの面積 S(k) を α と β で表せ。
- (3) $\lim_{k\to\infty} S(k)$ を求めよ。