- $ig|iggl. f(x) = x^3$ とするとき,以下の問いに答えよ。
 - (1) $0 \le a < x < y$ を満たすすべての a, x, y に対して

$$\frac{f(x) - f(a)}{x - a} < \frac{f(y) - f(x)}{y - x}$$

が成り立つことを示せ。

(2) y < x < b を満たすすべての x, y に対して

$$f(x) > \frac{(x-y)f(b) + (b-x)f(y)}{b-y}$$

が成り立つような b の範囲を求めよ。

- $oxed{2}$ 放物線 $C:y=x^2$ に対して,以下の問いに答えよ。
 - (1) C 上の点 $P(a,a^2)$ を通り,P における C の接線に直交する直線 l の方程式を求めよ。
 - (2) l を (1) で求めた直線とする。 $a \neq 0$ のとき、直線 x = a を l に関して 対称に折り返して得られる直線 m の方程式を求めよ。
 - (3) (2) で求めた直線 m は a の値によらず定点 F を通ることを示し、F の 座標を求めよ。

- 数直線上を動く点 P がある。裏表の出る確率が等しい硬貨を 2 枚投げて, 2 枚 とも表が出たら P は正の向きに 1 だけ移動し, 2 枚とも裏が出たら P は負の向きに 1 だけ移動し,それ以外のときはその位置にとどまるものとする。 P が原点 O を出発点として,このような試行を n 回繰り返して到着した位置を S_n とする。以下の問いに答えよ。
 - (1) $S_2 = -1$ となる確率を求めよ.
 - (2) $S_3 = 1$ となる確率を求めよ.
 - (3) 試行をn 回繰り返して出た表の総数をi とするとき、 S_n を求めよ.
 - (4) k を整数とするとき, $S_n = k$ となる確率を求めよ.

- $| \underline{4} |$ 四面体 ABCD において,辺 AB の中点を M,辺 CD の中点を N とする。以下の問いに答えよ。
 - (1) 等式 $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC} + \overrightarrow{PD}$ を満たす点 P は存在するか。証明をつけて答えよ。
 - (2) 点 Q が等式 [QA+QB]=[QC+QD] を満たしながら動くとき、点 Q が描く図形を求めよ。
 - (3) 点 R が等式 $[RA^2]+[RB^2]=[RC^2]+[RD^2]$ を満たしながら動くとき、内積 $\overrightarrow{MN}\cdot\overrightarrow{MR}$ は R のとり方によらず一定であることを示せ。
 - (4) (2) の点 Q が描く図形と (3) の点 R が描く図形が一致するための必要 十分条件は [AB]=[CD] であることを示せ。