- 1 鋭角三角形 $\triangle ABC$ において、頂点 A, B, C から各対辺に垂線 AD, BE, CF を下ろす。これらの垂線は垂心 H で交わる。このとき、以下の問いに答えよ。
 - (1) 四角形 BCEF と AFHE が円に内接することを示せ。
 - (2) $\angle ADE = \angle ADF$ であることを示せ。

- 2 以下の問いに答えよ。
 - (1) 6以上の整数 n に対して不等式

$$2^n > n^2 + 7$$

が成り立つことを数学的帰納法により示せ。

(2) 等式

$$p^q = q^p + 7$$

を満たす素数の組(p,q)をすべて求めよ。

- $oxed{3}$ サイコロを $oxed{3}$ 回振って出た目の数をそれぞれ順に $oxed{a}$, $oxed{b}$, $oxed{c}$ とする。以下の問いに答えよ。
 - (1) a, b, c がある直角三角形の 3 辺の長さとなる確率を求めよ。
 - (2) a, b, c がある鈍角三角形の 3 辺の長さとなる確率を求めよ。

|4| _{多項式 P(x) を}

$$P(x) = \frac{(x+i)^7 - (x-i)^7}{2i}$$

により定める。ただし、iは虚数単位とする。以下の問いに答えよ。

- (1) $P(x) = a_0 x^7 + a_1 x^6 + a_2 x^5 + a_3 x^4 + a_4 x^3 + a_5 x^2 + a_6 x + a_7$ とするとき、係数 a_0, \dots, a_7 をすべて求めよ。
- (2) $0 < \theta < \pi$ に対して、

$$P\left(\frac{\cos\theta}{\sin\theta}\right) = \frac{\sin 7\theta}{\sin^7\theta}$$

が成り立つことを示せ。

(3) (1) で求めた a_1 , a_3 , a_5 , a_7 を用いて、多項式 $Q(x)=a_1x^3+a_3x^2+a_5x+a_7$ を考える。 $\theta=\frac{\pi}{7}$ として、k=1,2,3 について

$$x_k = \frac{\cos^2 k\theta}{\sin^2 k\theta}$$

とおく。このとき、 $Q(x_k)=0$ が成り立つことを示し、 $x_1+x_2+x_3$ の値を求めよ。

空間内に、直線l で交わる 2 平面 α , β と交線l 上の 1 点 O がある。さらに、平面 α 上の直線 m と平面 β 上の直線 n を、どちらも点 O を通り l に垂直にとる。 m, n 上にそれぞれ点 P, Q があり、

$$OP = \sqrt{3}, \quad OQ = 2, \quad PQ = 1$$

であるとする。線分 PQ 上の動点 T について、PT=t とおく。点 T を中心とした半径 $\sqrt{2}$ の球 S を考える。このとき、以下の問いに答えよ。

- (1) S の平面 α による切り口の面積を t を用いて表せ。
- (2) S の平面 α による切り口の面積と S の平面 β による切り口の面積の和を f(t) とおく。T が線分 PQ 上を動くとき、f(t) の最大値と、そのときの t の値を求めよ。

6 関数

$$f(x) = \int_0^{\pi} |\sin(t - x) - \sin 2t| dt$$

の区間 $0 \le x \le \pi$ における最大値と最小値を求めよ。