第 1 問

 $0 \le \alpha \le \beta$ をみたす実数 α, β と、2 次式 $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta$ について、

$$\int_{-1}^{1} f(x)dx = 1$$

が成立しているとする。このとき定積分

$$S = \int_0^a f(x)dx$$

をaの式で表し、Sがとりうる値の最大値を求めよ。

第 2 問

白黒 2 種類のカードがたくさんある。そのうち 4 枚を手もとにもっているとき、次の操作 (A) を考える。

(A) 手持ちの 4 枚の中から 1 枚を,等確率 $\frac{1}{4}$ で選び出し,それを違う色のカードにとりかえる。

最初にもっている 4 枚のカードは、白黒それぞれ 2 枚であったとする。以下の (1), (2) に答えよ。

- (1) 操作 (A) を 4 回繰り返した後に初めて、4 枚とも同じ色のカードになる 確率を求めよ。
- (2) 操作 (A) を n 回繰り返した後に初めて、4 枚とも同じ色のカードになる確率を求めよ。

第 3 問

座標平面上の 3 点 A(1,0), B(-1,0), C(0,-1) に対し,

 $\angle APC = \angle BPC$

をみたす点 P の軌跡を求めよ。ただし $P \neq A, B, C$ とする。

第 4 問

p を自然数とする。次の関係式で定められる数列 $\{a_n\}$, $\{b_n\}$ を考える。

$$\begin{cases} a_1 = p, & b_1 = p+1 \\ a_{n+1} = a_n + pb_n & (n = 1, 2, 3, \dots) \\ b_{n+1} = pa_n + (p+1)b_n & (n = 1, 2, 3, \dots) \end{cases}$$

(1) $n=1,2,3,\cdots$ に対し、次の 2 つの数がともに p^3 で割り切れることを示せ。

$$a_n - \frac{n(n-1)}{2}p^2 - np$$
, $b_n - n(n-1)p^2 - np - 1$

(2) p を 3 以上の奇数とする。このとき, a_p は p^2 で割り切れるが, p^3 では割り切れないことを示せ。