第 1 問

以下の問いに答えよ。

(1) t を実数の定数とする。実数全体を定義域とする関数 f(x) を

$$f(x) = -2x^2 + 8tx - 12x + t^3 - 17t^2 + 39t - 18$$

と定める。このとき、関数 f(x) の最大値を t を用いて表せ。

(2) (1) の「関数 f(x) の最大値」を g(t) とする。t が $t \ge -\frac{1}{\sqrt{2}}$ の範囲を動くとき,g(t) の最小値を求めよ。

第 2 問

a を自然数(すなわち 1 以上の整数)の定数とする。白球と赤球があわせて 1 個以上入っている袋 U に対して、次の操作 (*) を考える。

- (*) 袋 U から球を 1 個取り出し、
 - (i) 取り出した球が白球のときは、袋 U の中身が白球 a 個、赤球 1 個となるようにする。
 - (ii) 取り出した球が赤球のときは、その球を袋 U へ戻すことなく、袋 U の中身はそのままにする。

はじめに袋Uの中に、白球がa+2個、赤球が1個入っているとする。この袋Uに対して操作 (*)を繰り返し行う。たとえば、1回目の操作で白球が出たとすると、袋Uの中身は白球a個、赤球1個となり、さらに2回目の操作で赤球が出たとすると、袋Uの中身は白球a個のみとなる。n回目に取り出した球が赤球である確率を p_n とする。ただし、袋Uの中の個々の球の取り出される確率は等しいものとする。

- (1) p_1, p_2 を求めよ。
- (2) $n \ge 3$ に対して p_n を求めよ。

第 3 問

座標平面の原点を O で表す。線分 $y=\sqrt{3}x$ $(0 \le x \le 2)$ 上の点 P と,線分 $y=-\sqrt{3}x$ $(-3 \le x \le 0)$ 上の点 Q が,線分 OP と線分 OQ の長さの和が 6 となるように動く。このとき,線分 PQ の通過する領域を D とする。

- (1) s を $-3 \le s \le 2$ をみたす実数とするとき,点 (s,t) が D に入るような t の範囲を求めよ。
- (2) Dを図示せよ。

第 4 問

r を 0 以上の整数とし、数列 $\{a_n\}$ を次のように定める。

$$a_1 = r$$
, $a_2 = r + 1$, $a_{n+2} = a_{n+1}(a_n + 1)$ $(n = 1, 2, 3, \dots)$

また、素数 p を 1 つとり、 a_n を p で割った余りを b_n とする。ただし、0 を p で割った余りは 0 とする。

- (1) 自然数 n に対し、 b_{n+2} は $b_{n+1}(b_n+1)$ を p で割った余りと一致することを示せ。
- (2) r=2, p=17 の場合に、10 以下のすべての自然数 n に対して、 b_n を求めよ。
- (3) ある 2 つの相異なる自然数 m, m に対して,

$$b_{n+1} = b_{m+1} > 0, \quad b_{n+2} = b_{m+2}$$

が成り立ったとする。このとき、 $b_n = b_m$ が成り立つことを示せ。