第 1 問

実数 a,b に対して

$$f(\theta) = \cos 3\theta + a\cos 2\theta + b\cos \theta$$

とし、 $0 < \theta < \pi$ で定義された関数

$$g(\theta) = \frac{f(\theta) - f(0)}{\cos \theta - 1}$$

を考える。

- (1) $f(\theta)$ と $g(\theta)$ を $x = \cos \theta$ の整式で表せ。
- (2) $g(\theta)$ が $0<\theta<\pi$ の範囲で最小値 0 をとるための a,b についての条件を求めよ。また、条件をみたす点 (a,b) が描く図形を座標平面上に図示せよ。

第 2 問

座標平面上で x 座標と y 座標がいずれも整数である点を格子点という。格子点上を次の規則に従って動く点 P を考える。

- (a) 最初に、点 P は原点 O にある。
- (b) ある時刻で点 P が格子点 (m,n) にあるとき、その 1 秒後の点 P の位置は、隣接する格子点 (m+1,n), (m,n+1), (m-1,n), (m,n-1) のいずれかであり、また、これらの点に移動する確率は、それぞれ $\frac{1}{4}$ である。
- (1) 点 P が、最初から 6 秒後に直線 y=x 上にある確率を求めよ。
- (2) 点 P が、最初から 6 秒後に原点 O にある確率を求めよ。

第 3 問

複素数平面上の原点以外の点 z に対して、 $w=\frac{1}{z}$ とする。

- (1) α を 0 でない複素数とし、点 α と原点 O を結ぶ線分の垂直二等分線を L とする。点 z が直線 L 上を動くとき、点 w の軌跡は円から 1 点を除 いたものになる。この円の中心と半径を求めよ。
- (2) 1 の 3 乗根のうち、虚部が正であるものを β とする。点 β と点 β^2 を結 ぶ線分上を点 z が動くときの点 w の軌跡を求め、複素数平面上に図示せよ。

第 4 問

$$p = 2 + \sqrt{5}$$

とおき、自然数 $n=1,2,3,\cdots$ に対して

$$a_n = p^n + \left(-\frac{1}{p}\right)^n$$

と定める。以下の問いに答えよ。ただし設問(1)は結論のみを書けばよい。

- (1) a_1, a_2 の値を求めよ。
- (2) $n \ge 2$ とする。積 $a_1 a_n$ を、 a_{n+1} と a_{n-1} を用いて表せ。
- (3) a_n は自然数であることを示せ。
- (4) a_{n+1} と a_n の最大公約数を求めよ。

第 5 問

kを実数とし、座標平面上で次の 2 つの放物線 $C,\,D$ の共通接線について考える。

$$C: \quad y = x^2 + k$$

$$D: \quad x = y^2 + k$$

- (1) 直線 y = ax + b が共通接線であるとき、a を用いて k と b を表せ。ただし $a \neq 1$ とする。
- (2) 傾きが 2 の共通接線が存在するように k の値を定める。このとき、共通接線が 3 本存在することを示し、それらの傾きと y 切片を求めよ。

第 6 問

点 O を原点とする座標空間内で、一辺の長さが 1 の正三角形 OPQ を動かす。また、点 A(1,0,0) に対して、 $\angle AOP$ を θ とおく。ただし $0^\circ \le \theta \le 180^\circ$ とする。

- (1) 点 Q が (0,0,1) にあるとき、点 P の x 座標がとりうる値の範囲と、 θ が とりうる値の範囲を求めよ。
- (2) 点 Q が平面 x=0 上を動くとき、辺 OP が通過しうる範囲を K とする。 K の体積を求めよ。