第 1 問

関数

$$f(x) = \frac{x}{\sin x} + \cos x \quad (0 < x < \pi)$$

の増減表をつくり、 $x \to +0$ 、 $x \to \pi - 0$ のときの極限を調べよ。

第 2 問

数列 a_1, a_2, \ldots を

$$a_n = \frac{2n+1}{n!} C_n$$
 $(n = 1, 2, \ldots)$

で定める。

- (1) $n \geqq 2$ とする。 $\frac{a_n}{a_{n-1}}$ を既約分数 $\frac{q_n}{p_n}$ として表したときの分母 $p_n \geqq 1$ と分子 q_n を求めよ。
- (2) a_n が整数となる $n \ge 1$ をすべて求めよ。

第 3 問

放物線 $y=x^2$ のうち $-1 \le x \le 1$ をみたす部分を C とする。座標平面上の原点 O と点 A(1,0) を考える。k>0 を実数とする。点 P が C 上を動き、点 Q が線分 OA 上を動くとき、

$$OR = \frac{1}{k}OP + kOQ$$

をみたす点 R が動く領域の面積を S(k) とする。

$$S(k)$$
 および $\lim_{k o +0} S(k)$ 、 $\lim_{k o \infty} S(k)$ を求めよ。

第 4 問

$$f(x) = x^3 - 3a^2x$$

とおく。次の 2 条件をみたす点 (a,b) の動きうる範囲を求め、座標平面上に図示せよ。

条件 1: 方程式 f(x) = b は相異なる 3 実数解をもつ。

条件 2:さらに、方程式 f(x)=b の解を $\alpha<\beta<\gamma$ とすると $\beta>1$ である。

第 5 問

複素数平面上の原点を中心とする半径 1 の円を C とする。点 P(z) は C 上にあり、点 A(1) とは異なるとする。点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。 $w=\frac{1}{1-u}$ とおき、w と共役な複素数を \overline{w} で表す。

- (1) u と \overline{w} を z についての整式として表し、絶対値の商 $\left|\frac{w+\overline{w}-1}{w}\right|$ を求めよ。
- (2) C のうち実部が $\frac{1}{2}$ 以下の複素数で表される部分を C' とする。点 P(z) が C' 上を動くときの点 R(w) の軌跡を求めよ。

第 6 問

座標空間内の 4 点 O(0,0,0)、A(1,0,0)、B(1,1,0)、C(1,1,1) を考える。 $\frac{1}{2} < r < 1$ とする。点 P が線分 OA、AB、BC 上を動くときに点 P を中心と する半径 r の球(内部を含む)が通過する部分を、それぞれ V_1 、 V_2 、 V_3 とする。

- (1) 平面 y=t が V_1 、 V_3 双方と共有点をもつような t の範囲を与えよ。 さら に、この範囲の t に対し、平面 y=t と V_1 の共通部分および、平面 y=t と V_3 の共通部分を同一平面上に図示せよ。
- (2) V_1 と V_3 の共通部分が V_2 に含まれるための r についての条件を求めよ。
- (3) r は (2) の条件をみたすとする。 V_1 の体積を S とし、 V_1 と V_2 の共通部分の体積を T とする。 V_1 、 V_2 、 V_3 を合わせて得られる立体 V の体積を S と T を用いて表せ。
- (4) ひきつづき r は (2) の条件をみたすとする。S と T を求め、V の体積を決定せよ。