第 1 問

座標平面上で,放物線 $C: y=ax^2+bx+c$ が 2 点 P $(\cos\theta,\sin\theta)$, Q $(-\cos\theta,\sin\theta)$ を通り,点 P と点 Q のそれぞれにおいて円 $x^2+y^2=1$ と共通の接線を持っている。ただし, $0^\circ<\theta<90^\circ$ とする。

- (1) a, b, c を $s = \sin \theta$ を用いて表せ。
- (2) 放物線 C と x 軸で囲まれた図形の面積 A を s を用いて表せ。
- (3) $A \ge \sqrt{3}$ を示せ。

第 2 問

以下の問いに答えよ。必要ならば, $0.3 < \log_{10} 2 < 0.31$ であることを用いてよい。

- (1) $5^n > 10^{19}$ となる最小の自然数 n を求めよ。
- (2) $5^m + 4^m > 10^{19}$ となる最小の自然数 m を求めよ。

第 3 問

座標平面上に 2 点 O(0,0), A(0,1) をとる。x 軸上の 2 点 P(p,0), Q(q,0) が、次の条件 (i),(ii) を満たすとする。

- (i) 0 かつ <math>p < q
- (ii) 線分 AP の中点を M とするとき、 $\angle OAP = \angle PMQ$
- (1) *q* を *p* を用いて表せ。
- (2) $q=\frac{1}{3}$ となる p の値を求めよ。
- (3) $\triangle OAP$ の面積を S, $\triangle PMQ$ の面積を T とする。 S>T となる p の範囲を求めよ。

第 4 問

n を 5 以上の奇数とする。平面上の点 O を中心とする円をとり,それに内接する正 n 角形を考える。n 個の頂点から異なる 4 点を同時に選ぶ。ただし,どの 4 点も等確率で選ばれるものとする。選んだ 4 点を頂点とする四角形が O を内部に含む確率 p_n を求めよ。